تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Authors

  • صمدزادگان, فرهاد
Abstract:

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which strongly effect on the SVMs performance: Optimum SVMs parameters determination and optimum feature subset selection. Traditional optimization algorithms are appropriate in limited search space but they usually trap in local optimum in high dimensional space, therefore it is inevitable to apply meta-heuristic optimization algorithms such as Genetic Algorithm to obtain global optimum solution. This paper evaluates the potential of different proposed optimization scenarios in determining of SVMs parameters and feature subset selection based on Genetic Algorithm (GA). Obtained results on AVIRIS Hyper spectral imagery demonstrate superior performance of SVMs achieved by simultaneously optimization of SVMs parameters and input feature subset. In Gaussian and Polynomial kernels, the classification accuracy improves by about 5% and15% respectively and more than 90 redundant bands are eliminated. For comparison, the evaluation is also performed by applying it to Simulated Annealing (SA) that shows a better performance of Genetic Algorithm especially in complex search space where parameter determination and feature selection are solve simultaneously.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

رویکرد حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک جهت تخمین رتبه اعتباری مشتریان بانک‌ها

یکی از مهم¬ترین مسائلی که همواره بانک¬ها و مؤسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری یا احتمال عدم ایفای تعهدات از سوی متقاضیان دریافت کننده تسهیلات اعتباری می¬باشد. رقم قابل توجه مطالبات معوق بانک‌ها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن می¬باشد. از این رو تاکنون تلاش‌های بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقه بندی هرچه دقیق¬تر متقاضیان تسهیلات اعتباری ...

full text

کاربرد الگوریتم ژنتیک و ماشین بردار پشتیبان در جستجوی پارامترهای نانوشراره‌های تاج خورشید

  Nanoflares are the small impulsive sudden energy releases, due to the explosion of solar background. Thus, determination of their energies and distributions is important . Recent observations and simulation models have shown that the frequency of their energies follows power-law. According to Parker hypothesis, if these exponents are greater than critical value 2, the contributions of nanofla...

full text

تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی

فن‌آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش‌های زمین و بررسی تغییرات آنها می‌باشد. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می‌کند. در این تحقیق سعی می‌گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...

full text

طبقه‌بندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقه‌بندی‌کننده‌های چندگانه ماشین بردار پشتیبان

طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و داده­های مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی SVM و قطعات...

full text

طبقه‌بندی طیفی-مکانی تصاویر ابرطیفی به کمک ویژگی‌های گشتاور‌ هندسی تصویر و الگوریتم ژنتیک

از تصاویر ابرطیفی همواره در حوزه‌های مختلفی مانند کشاورزی، زمین‌شناسی و معدن، مدیریت شهری، نظامی، شناسایی اهداف و... استفاده است. طبقه‌بندی که یکی از مهم‌ترین شاخه‌ها از الگوریتم‌های پردازشی داده‌های ابرطیفی است که به‌طور سنتی با اطلاعات طیفی انجام می‌شود. تحقیقات گوناگون نشان داده است که استفاده از ویژگی‌های مکانی تصویر در کنار ویژگی‌های طیفی موجب می‌‌شود دقت طبقه‌بندی به میزان چشمگیری افزایش ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 13

pages  9- 24

publication date 2013-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023